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Periodic travelling wave solutions for a strongly nonlinear model of long internal
wave propagation in a two-fluid system are derived and extensively analysed, with
the aim of providing structure to the rich parametric space of existence of such
waves for the parent Euler system. The waves propagate at the interface between
two homogeneous-density incompressible fluids filling the two-dimensional domain
between rigid planar boundaries. The class of waves with a prescribed mean elevation,
chosen to coincide with the origin of the vertical (parallel to gravity) axis, and
prescribed zero period-average momentum and volume-flux is studied in detail. The
constraints are selected because of their physical interpretation in terms of possible
processes of wave generation in wave-tanks, and give rise to a quadrature formula
which is analysed in parameter space with a combination of numerical and analytical
tools. The resulting model solutions are validated against those computed numerically
from the parent Euler two-layer system with a boundary element method. The
parametric domain of existence of model periodic waves is determined in closed form
by curves in the amplitude–speed (A, c) parameter plane corresponding to infinite
period limiting cases of fronts (conjugate states) and solitary waves. It is found that
the existence domain of Euler solutions is a subset of that of the model. A third
closed form relation between c and A indicates where the Euler solutions cease to
exist within the model’s domain, and this is related to appearance of ‘overhanging’
(multiple valued) wave profiles. The model existence domain is further partitioned
in regions where the model is expected to provide accurate approximations to Euler
solutions based on analytical estimates from the quadrature. The resulting predictions
are found to be in good agreement with the numerical Euler solutions, as exhibited by
several wave properties, including kinetic and potential energy, over a broad range of
parameter values, extending to the limiting cases of critical depth ratio and extreme
density ratios. In particular, when the period is sufficiently long, model solutions
show that for a given supercritical speed waves of substantially larger amplitude
than the limiting amplitude of solitary waves can exist, and are good approximations
of the corresponding Euler solutions. This finding can be relevant for modelling
field observations of oceanic internal waves, which often occur in wavetrains with
multiple peaks.
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1. Introduction
Internal waves are an important feature of geophysical fluid dynamics, as

stratification is an inherent component of near-equilibrium states of ocean and
atmosphere. Because of the relatively low viscosities and small density differences of
water and air in each of these environments, energy penalties paid by natural forcing
agents such as tides and winds in displacing fluid parcels from equilibrium are also
relatively small, which can result in internal wave motion of large amplitudes, as
recent improvements in instrumentation and observational techniques in the ocean
are continuously revealing (see e.g. the review by Helfrich & Melville 2006). In this
paper, we focus on what is possibly the simplest set-up capable of supporting internal
wave motion of arbitrary amplitude, that of a two-layer inviscid and incompressible
fluid of homogenous densities between plates of infinite horizontal extent. Despite
its long history in the literature, it is only somewhat recently that attention has
been paid, by experimental and theoretical investigations (see e.g. Grue et al. 1999;
Craig, Guyenne & Kalisch 2005; Troy & Koseff 2005; Bona, Lannes & Saut 2008),
to the large amplitude motion that can be attained in this configuration. Among
other findings, these studies have shown that the long-wave assumption in a two-layer
system makes it possible to develop models which can describe solitary wave motion
of arbitrary amplitude and provide closed form solutions that compare favourably
with laboratory experimental data under appropriate circumstances (Camassa et al.
2006). While solitary waves are of interest in many practical situations, e.g. in field
studies (Duda et al. 2004), a more extensive test of model fidelity is offered by the class
of periodic travelling wave motion, which includes that of solitary waves as a limiting
case. In this study, we examine periodic wavetrain solutions for a class of long-wave
asymptotic models developed by Miyata (1985, 1988) and Choi & Camassa (1996,
1999), and establish the parametric range where such solutions can be considered
valid approximations to those of the parent Euler equations. This is carried out by
a direct comparison with numerical computations of both two-layer and continuous
stratification solutions of the Euler equations, through a variety of wave properties,
such as wave profiles, fluid velocities, wave speed and amplitude.

Unlike the case of a solitary wave, whose physical parameters can be linked in
the form of boundary conditions to a far-field reference configuration of the fluid, a
periodic travelling wavetrain admits a richer class of such parameters, generally related
to the invariants of motion. Unfortunately, the highly idealized nature of periodicity
extending for all space and time does not allow the identification of a preferred
(minimal) set of parameters determining a unique periodic wavetrain, given that the
physical processes necessary for its generation, as well as the physically necessary
transition to boundary or far-field reference states, are neglected in this idealization.
This, of course, is an issue that transcends the case of internal waves. The choice
of the most convenient physical quantities that determine a given wavetrain already
presents itself in the study of periodic irrotational waves at the free surface of a
single fluid layer. It is remarkable that for these waves such questions appear to have
been settled only relatively recently, and this only in the context of waves symmetric
around their crests (see Benjamin 1995 for a proof of a long-standing conjecture on
this issue formulated by Benjamin & Lighthill 1954).

With this in mind, in § 2 we solve by quadratures the system of four ordinary
differential equations (ODEs) resulting from the travelling wave ansatz. In this process,
we collect four integration constants, which are constants of motion in the wave frame.
Thus, at least within the realm of these asymptotic models, the minimal number of
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physical invariant quantities needed to determine a unique period wavetrain is four.
The phase speed of the wave can then be found by specifying some integral property
of the wave (e.g. total horizontal momentum) in the lab frame. In § 3, we establish
relations between relevant physical quantities associated with the periodic wavetrain
and the four constants of integration in the quadrature. A subset of these relations
can be chosen to determine the quadrature’s constants. In particular, we show that
two of these constants can be given a natural physical interpretation in terms of
volume fluxes in each layer. The remaining two integration constants reduce, under
the assumption of irrotationality, to two conserved quantities for two-layer potential
flow related to the Bernoulli constants and the so-called flow force. These are in turn
fixed by seeking, e.g. an a priori imposed peak-to-trough amplitude and a prescribed
mean layer thickness. This choice makes the connection with previous work on
solitary waves somewhat more transparent by defining a quiescent state and allows us
to follow easily the model solutions in the distinguished limits of infinitesimal wave
amplitudes, where the long-wave critical speed is naturally defined from the general
Euler internal wave dispersion relation for a two-fluid system (Lamb 1932).

We proceed, in § 4, to construct a particular class of periodic waves which limits to
the infinitesimal amplitude waves for the quiescent reference state. The final result is a
two-parameter family of periodic solutions (e.g. speed and amplitude which determine
the period). In particular, our approach allows us to deal with the technical difficulties
posed by the quadrature solution which in general leads to hyperelliptic integrals (as
opposed to elliptic integrals as in the case of solitary waves). We study the properties
of the periodic solutions of this two-parameter family in § 5. In an effort to establish
the limitations on model’s validity range through its periodic travelling wave solutions,
§ 6 presents comparisons with numerically computed solutions of both two-layer and
near two-layer continuously stratified periodic travelling wave Euler solutions.

The study of the limiting cases of solitary waves and fronts is fundamental to our
construction of periodic solutions and it is interesting in its own right. However, to
avoid distraction from the main focus of periodic solutions in our constrained class,
we relegate the details of these studies to the appendices. In particular, in Appendix A
we sketch the construction of solitary wave solutions on background uniform currents
in each layer, useful in a systematic study of various classes of periodic travelling wave
solutions of the model as demonstrated in Appendix B. Other choices of constraints
determining a unique periodic travelling wave solution have been more popular in the
literature. Ultimately the issue of which among these is preferable must be related to
the physical process of generation of (locally) periodic travelling wave trains. In this
respect, we note the controversy around the concepts of wave momentum and mass
drift for surface periodic wave trains in one-layer fluids, which has yet to be settled
experimentally (cf. McIntyre 1981; Yih 1997; Monismith et al. 2007). We discuss some
of these alternatives and their connection to our primary choice in Appendix C.

2. The model equations and travelling wave system
We seek periodic wave solutions of the long-wave strongly nonlinear asymptotic

model (in the small parameter ε = H/L, where L is a typical horizontal scale of the
waves and H is the total thickness of the two layers) derived by Choi & Camassa
(1999) for a system of two inviscid and nearly irrotational fluid layers of constant
densities under gravity (with ρ1 < ρ2 for stable stratification); see figure 1. The model
assumes only one small parameter, with no restrictions on the amplitude of the
interface displacement. We define the interface displacement between the two layers
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Figure 1. Schematics of the two-fluid system with main notation definitions.

as the graph z = ζ (x, t) and choose the origin of our coordinate systems so that
the two fluid layers are bounded above and below by rigid planes at z = h1 and
z = −h2, respectively. We denote by η1(x, t) = h1 − ζ (x, t) and η2(x, t) = h2 + ζ (x, t),
respectively, the thicknesses of each layer.

The set of model equations that governs the dynamics of a two-layer system under
the long-wave approximation is

ηkt + (ηkuk)x = 0, (2.1)

ukt + ukukx + gζx = − 1

ρk

∂xPI +
1

ηk

∂x

(
1

3
η3

kGk

)
, k = 1 , 2, (2.2)

where uk(x, t) denote the layer mean velocities

uk(x, t) =
1

ηk

∫
[ηk ]

uk(x, z, t)dz, (2.3)

where the layer domains [ηk] are defined as ζ � z � h1 and −h2 � z � ζ , for k = 1, 2
respectively, PI (x, t) is the pressure at the interface, and the nonlinear dispersive terms
are defined, respectively, by

Gk (x, t) = ukxt + ukukxx − (ukx)
2 , k = 1, 2. (2.4)

The first pair is exact and is simply an expression of mass conservation per layer,
while the second pair corresponds to horizontal momentum balance and is accurate
up to terms in the long-wave parameter asymptotics of order O(ε4). For details of
the model derivation, see Choi & Camassa (1999).

2.1. Travelling wave solutions

For a stationary wave moving from left to right with constant speed (c), we make the
change of variable

X = x − c t, hence ∂t = −c ∂X, ∂x = ∂X

and consider

ζ (x, t) ≡ ζ (X), uk(x, t) ≡ uk(X), PI (x, t) ≡ PI (X). (2.5)

The equations of mass conservation and momentum for each layer therefore reduce
to a system of four ODEs with respect to the independent variable X. The system
can be integrated by quadratures, which introduces four integration constants that
represent an equal number of motion invariants. Equation (2.1) becomes, after one
integration in X,

−cηk + ηkuk = Ck, k = 1, 2, (2.6)

where C1 and C2 are clearly the volume fluxes in the wave frame, in each layer.
Eliminating the pressure between the two momentum equations (2.2) and with the
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help of (2.6), we obtain[
ρ1C

2
1

η3
1

+
ρ2C

2
2

η3
2

− γ

]
ζX =

ρ1

η1

(
1

3
η3

1G1

)
X

− ρ2

η2

(
1

3
η3

2G2

)
X

, (2.7)

with γ ≡ g(ρ2 − ρ1). In order to separate variables, we integrate the third-order
ODE (2.7) once directly and once with the integrating factor η1, collecting two more
constants of integration (which we denote by C3, C4, respectively). By eliminating
the common second derivative ζXX between the resulting equations, we obtain the
following nonlinear ODE for the interfacial displacement ζ (X):

ζ 2
X = 3

ρ1C
2
1η2 + ρ2C

2
2η1 − γ ζ 2η1η2 + 2C3η

2
1η2 − 2C4η1η2

ρ1C
2
1η2 + ρ2C

2
2η1

. (2.8)

This quadrature formula is manifestly invariant with respect to horizontal translations,
as implicit in the travelling wave ansatz. Because of the polynomial dependence on ζ ,
it is perhaps less obvious that the quadrature is also invariant with respect to vertical
translations of the reference frame, as a direct calculation readily shows.

We remark that the quadrature (2.8) is derived without assuming irrotational flow
in each layer; a weak O(ε2) horizontal, y-component, of vorticity is compatible with
this expression. However, it is customary in the literature to consider irrotational
waves, and we reconstruct the velocity field dependence on z from knowledge of its
layer mean (2.3) at this order O(ε2) under this assumption. This leads to the velocity
expressions (cf. Camassa et al. 2006)

uk(X, z) = uk +

(
η2

k

6
− (zk + hk)

2

2

)
(uk)XX, wk(X, z) = −(uk)X(zk + hk), (2.9)

with zk = (−1)kz, which are asymptotic with errors O(ε4) and O(ε3), for the horizontal
and vertical velocity, respectively. With these expressions at hand, one can show that
the integration constants C3, C4 correspond, up to terms of O(ε4), to the motion
invariants for stationary flows given by the Bernoulli constants in each layer

Rk = pk +
ρk

2
(u2

k + w2
k ) + ρkgz,

k = 1, 2, and the extended horizontal momentum flux or flow force

S =

∫ h1

−h2

(
p + ρu2

)
dz.

More precisely, these constants are defined by

C3 = R ≡ R1 − R2, C4 = S ≡ S − R2H +
g

2
(ρ1h

2
1 − ρ2h

2
2),

i.e. the Bernoulli differential constant R and the reduced flow force S, respectively,
in the terminology of Bridges & Donaldson (2007). With these definitions, we recover
the same quadrature formula as in Miyata (1985).

We note that there appears to be no rigorous proof regarding the minimal set of
constants of motion for general symmetric periodic solutions of Euler equations in
two-layer systems. Such a proof has been provided in recent years by Benjamin (1995)
for the one-layer case, addressing a long-standing conjecture by Benjamin & Lighthill
(1954) based on a model of small-amplitude, long-wave periodic motion. Thorpe
(1968) presents a similar construction for a two-layer (weakly nonlinear) system; in
his approach (as in Miyata 1985), however, five wave-frame invariants generalizing
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Figure 2. Potential for the quadrature (2.8). r1, . . . , r4 are the roots of the quartic numerator
while rd is the root of the denominator, always located ‘outside’ the physical domain.

those in Benjamin & Lighthill (1954) would be needed to completely characterize a
periodic wavetrain, viz. mass fluxes in each layer, Bernoulli constants in each layer and
total flow force. In fact, the Bernoulli constants, being related by pressure continuity
at the interface, are not independent, and only the difference between them (R) can
be regarded as a true motion invariant. Moreover, unlike the solitary wave case, in
the periodic setting there is no reference state to which an asymptotic pressure head
can be related, which allows (one of) the Bernoulli constants to be fixed. Thus, an
additional invariant (S in our notation) needs to be obtained by eliminating the
arbitrary Bernoulli constants from the flow force (cf. Bridges & Donaldson 2007).

The quadrature (2.8) corresponds to the classical case of a particle in an unbounded
potential well. The potential is a rational function of ζ with a quartic polynomial at
the numerator (recall that η1 = h1 − ζ and η2 = h2 + ζ )

P (ζ ) = ρ1C
2
1η2 + ρ2C

2
2η1 − γ ζ 2η1η2 + 2C3η

2
1η2 − 2C4η1η2, (2.10)

and a monomial at the denominator, ρ1C
2
1η2 + ρ2C

2
2η1. The numerator is positive for

large ζ , with lim
ζ→±∞

P (ζ ) = +∞, while the denominator is always positive inside the

physical domain (consequently the corresponding root, rd say, is outside the physical
domain), since ρ1C

2
1η2 + ρ2C

2
2η1 > 0. For periodic solutions to exist, there needs to be

two roots of the numerator P (ζ ), with P > 0 between these roots. Hence, generically,
there must be four real roots of the polynomial P (ζ ) to have periodic solutions.
These roots can be ordered by magnitude, r1 < r2 etc., and periodic solutions will
vary between the trough position r2 and the crest position r3, see figure 2. This
structure – five real roots, four for numerator and one for denominator – gives rise
to hyperelliptic integrals, in contrast to the elliptic integrals that arise in the solitary
wave solutions, which correspond to the limiting situation of root collisions of P .

Unfortunately, manipulations of hyperelliptic integrals have not been completed
to a level comparable to their elliptic counterparts. A modicum of information on
the solutions of (2.8) can be obtained in terms of the twelve slotted, five variable,
Lauricella D multiple hypergeometric function, F

(5)
D (see e.g. Drociuk 2004).

We remark that in deriving the quadrature (2.8), we have not used any assumption
of symmetry, yet this expression yields only symmetric wave shapes. Thus, we can
infer that in the framework of the asymptotic model in Choi & Camassa (1999), long
periodic waves are symmetric up to O(ε4) corrections. We also note that, since the
root of the denominator of the quadrature is always outside the physical domain
(aside from special limits), singular solutions with cusps (infinite derivative) cannot
exist, which is a desirable outcome as such solutions would violate the assumptions
underlying the derivation of the long-wave model. Degenerate limits of periodic waves
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thus occur only as limits to solitary waves or fronts corresponding to root collisions
in the numerator of the quadrature (2.8). The only other degenerate limits correspond
to the possibility of vanishing denominator in the quadrature (2.8). This happens when
the root of the denominator limits to either ζ = h1 or ζ = −h2 (from above or below,
respectively), or this root migrates to infinity, which can happen when the coefficient
ρ2C

2
2 − ρ1C

2
1 of ζ vanishes. In the former case, the potential becomes cubic, similar to

the well-known case of Korteweg–de Vries (KdV) solutions, while in the latter case
the potential is a quartic, which is more akin to solutions of the KdV-modified-KdV
(or Gardner) equation. We remark that the first degeneracy necessarily occurs when
either C1 = 0 or C2 = 0, as well as in the limit of upper fluid density ρ1 = 0. The
latter will be discussed below together with the other physically extreme cases in the
context of wave profile solutions.

3. Physical interpretation of the integration constants
The results of the previous section show that periodic wave solutions of the long-

wave model depend on four parameters that are wave-frame quantities, with the
phase speed of the wave not being present in the quadrature (2.8). However, in
actual experimental set-ups for the generation of any kind of internal waves, there
would be an unambiguously defined laboratory frame of reference. This compels us
to consider the phase speed as an additional degree of freedom, and thus to conclude
that periodic wave solutions of the long-wave model are a five-parameter family. In
general, we can expect some of these five parameters to be fixed by the details of
the experimental set-up for an entire family of waves. For instance, in a closed wave
tank, one would naturally try to create waves with a wavemaker that achieves various
amplitudes and periods, while the mean level of the interface would stay close to
that of the quiescent initial state. In addition, a wavemaking mechanism such as the
plunger used by Thorpe (1968), which is activated by vertical forces only, may impart
zero net horizontal momentum to the fluid. Moreover, incompressibility in a closed
tank implies that the total (i.e. across the entire fluid column) volume flux in the lab
frame has to be zero. The resulting wave class would thus be constrained to satisfy
fixed mean interface (located at z = 0, say), zero total horizontal momentum and
zero total volume flux. The first two constraints could be assumed to hold locally per
period box. These constraints restrict the five-parameter family of periodic waves to
a two-parameter family, e.g. amplitude and speed, with the period being functionally
dependent on these. Other constraints among the five degrees of freedom are possible,
regardless of the physical means of generating periodic waves on a given background
state, and have been used in the literature.

With this in mind, in this section, we establish connections between conserved
quantities for periodic wave motion and the four constants of integration C1, . . . , C4

and the phase speed c present in the quadrature (2.8). We will use the relations
developed here primarily to construct various classes of periodic waves in § 4 and
Appendix C, as well as to study the properties of these classes. We group these
quantities in two categories: properties that are invariant with respect to a Galilean
change of reference frame and properties that depend on a particular inertial frame
of reference.

3.1. Other reference frame invariant quantities

We now specify the functional dependence of other relevant physical quantities,
amplitude, period, kinetic and potential energy, and horizontal mean Eulerian velocity,
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on the quadrature constants. This is needed to consider all forms of constraints used
in the literature for constructing periodic wavetrains.

Let C denote the set of integration constants {C1, C2, C3, C4} and R(ζ, C) denote
the rational function in ζ in the right-hand side of the quadrature (2.8), the ‘potential
well’ function. We use script characters to differentiate between physical quantities
defined through this quadrature and the values these quantities assume in the range
of their functional dependence on C , whenever confusion between these two notions
can arise. With this notation, the amplitude (defined as distance from peak to trough)
is

A(C) = r3(C) − r2(C), (3.1)

the period is given by the hyperelliptic integral

L(C) =

∫ r3(C)

r2(C)

dζ√
R(ζ, C)

, (3.2)

and the mean position of the interface (cf. Williams 1981 for a discussion) reads

ζ̃ (C) =
1

L(C)

∫ r3(C)

r2(C)

ζdζ√
R(ζ, C)

. (3.3)

Thus, for instance, the requirement that the mean of the interface coincides with the
interface of the background state, which we assume with no loss of generality to be
located at the vertical origin of the coordinate system, can be met by imposing the

integral constraint ζ̃ (C) = 0.

Finally, the total potential energy required for deforming the interface from the
quiescent state to the wave shape, averaged over the period, is

V (C) =
γ

2L(C)

∫ r3(C)

r2(C)

ζ 2dζ√
R(ζ, C)

. (3.4)

3.2. Frame-dependent quantities

In the following, we relate volume fluxes, momenta and kinetic energy to the
integration constants C and the phase speed and determine how these quantities
transform with change of frame of reference. (We remark that in deducing the
relations between these quantities and the quadrature constants we do not assume
irrotationality of the motion; the formulae we derive can be used in determining
classes of long periodic waves under weak rotational approximations consistent with
the model.) We denote by ·̂ quantities in the wave frame, i.e. the frame where the wave
is stationary. Two of the integration constants in the quadrature, C1 and C2, have a
clear physical interpretation, namely volume fluxes in the wave frame in each layer.
Indeed, the volume flux in the wave frame for the layer k is, by virtue of continuity
in each layer (2.6),

Q̂k =

∫
[ηk ]

(uk − c)dz = ukηk − cηk = Ck , k = 1, 2. (3.5)

We note that these layer volume fluxes are space and time independent solely in the
wave frame, and only the total volume flux across any vertical surface is constant
in the lab frame. The total volume fluxes in the wave frame and the lab frame are,
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respectively,

Q̂(C1, C2) = C1 + C2, (3.6)

Q(c, C1, C2) = C1 + C2 + cH. (3.7)

The period-averaged horizontal momentum in layer k (in the lab frame) is given by

Ik =
1

L(C)

∫ L(C)/2

−L(C)/2

∫
[ηk ]

ρkuk dz dX =
1

L(C)

∫ L(C)/2

−L(C)/2

ρkηkuk dX, k = 1, 2. (3.8)

Integrating (2.6) over the period after multiplication with ρk yields

Ik − cρkh̃k = ρkQ̂k, k = 1, 2,

where h̃k denotes the period-average of ηk . Thus, the period-averaged horizontal
momenta for layer k in the wave frame and the lab frame, respectively, are

Îk(Ck) = ρkCk, (3.9)

Ik(c, C) = ρkCk + cρkh̃k(C), k = 1, 2, (3.10)

so that the period-averaged total horizontal momenta in the wave and lab frames are

Î (C1, C2) = ρ1C1 + ρ2C2, (3.11)

I (c, C) = ρ1C1 + ρ2C2 + c(ρ1h̃1(C) + ρ2h̃2(C)), (3.12)

respectively. We remark that the above quantities are exact conservation laws for two-
layer Euler equations which derive simply from conservation of mass (and volume,
by incompressibility). As such, they also hold exactly for the model, since mass is
conserved with no asymptotic errors (cf. (2.1)). We further remark that, in general, for
two-layer Euler periodic solutions even when expressed by a multiply-valued interface
function (such as the case of ‘overhanging’ waves in § 6), incompressibility implies
that the total volume flux is

Q =
I1

ρ1

+
I2

ρ2

, (3.13)

which, together with the total period-averaged horizontal momentum I = I1 + I2,
provides a one-to-one correspondence between constraints applied to total fluid
domain-defined quantities I, Q and layer-defined quantities I1, I2. In particular, this
implies that when these total quantities are chosen to be zero, so are the layer
momenta I1 and I2 and vice versa.

Next, we express the kinetic energy per period in terms of the quadrature constants
and the phase speed. The period-averaged kinetic energy for layer k is given by

Tk =
ρk

2L(C)

∫ L(C)/2

−L(C)/2

∫
[ηk ]

(u2
k + w2

k ) dz dX, (3.14)

with u and w denoting the horizontal and vertical velocity components. We use the
asymptotic relations (2.9) for these components; carrying out the integration across
the layer in (3.14) yields

Tk =
ρk

2L(C)

∫ L(C)/2

−L(C)/2

[
u2

kηk + (uk)
2
X

η3
k

3

]
dX, (3.15)
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which, by using (3.5), (3.10) and the asymptotic relation for velocity (2.9), can be put
in the form

Tk =
ρkCk

2

1

L(C)

∫ L(C)/2

−L(C)/2

uk(X, (−1)khk)dX +
cIk

2
, k = 1, 2. (3.16)

We recognize in the first term of the above relation the mean Eulerian (horizontal)

velocity for layer k, defined as ũk = (1/L)
∫ L/2

−L/2
uk(X, z)dX, where z is any location

within the layer k that does not intersect the interface. This integral quantity can be
shown to be independent of z (within the assumed range) and can be expressed in
terms of the constants of integration C by using the asymptotic relation for velocity
(2.9)

ũk(c, C) = c +
1

L(C)

∫ r3(C)

r2(C)

Ck (3 + R(ζ, C))

3ηk

√
R(ζ, C)

dζ , (3.17)

neglecting terms of order O(ε4).
Hence, the kinetic energy in the layer k in terms of the quadrature constants and

the phase speed is

Tk(c, C) =
ρkQ̂kũk

2
+

cIk

2
, (3.18)

where Q̂k , the volume flux in the wave frame in the layer k, is given by (3.5), ũk , the
mean Eulerian velocity in layer k, is given by (3.17) and Ik , the horizontal momentum
in the lab frame for the layer k, is given by (3.10). We remark that the expression
of the kinetic energy (3.18), being derived from an asymptotic approximation to
the velocity field, is in principle affected by the accuracy of the asymptotic model.
However, with this equation we retrieve the exact form deduced by Klopman (1990)
for irrotational periodic wave trains in one-layer fluids, building upon previous work
by Longuet-Higgins (1975), who assumed that the lab frame was defined as the frame
for which the mean Eulerian velocity is zero.

4. Constrained solution class: zero total volume flux and horizontal momentum
periodic waves

We proceed with constructing the class of periodic waves we have alluded to in the
previous section, satisfying three constraints: fixed mean level of the interface, total
horizontal momentum in the lab frame zero and total volume flux in the lab frame
zero. These constraints leave two free parameters. For our purposes, we found that
the most advantageous choice to solve the system and describe solution properties is
to parametrize the family with amplitude A and phase speed c. We will first describe
how to determine particular solutions for prescribed amplitude and speed. We will
then determine the domain of existence of periodic wave solutions in the parameter
space (A , c) and study their limiting forms.

4.1. Periodic solutions for prescribed speed and amplitude

By requiring that the total volume flux given by (3.7) and total horizontal momentum
per period given by (3.12) are zero, the resulting linear system relates the two constants
of integration in the quadrature C1 and C2 to the phase speed and mean heights

Ck = −ch̃k, k = 1, 2. (4.1)

Note that it then follows from (3.10) that the period-averaged horizontal momentum in
each layer is zero. By choosing the coordinate system at the level of the quiescent state,
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the constraint of zero mean displacement of the interface implies h̃k = hk, k = 1, 2.

The constants C3 and C4 can be determined by seeking waves of amplitude A and
imposing the constraint of zero mean of interface displacement

A(c, C3, C4) = A, ζ̃ (c, C3, C4) = 0. (4.2)

We first relate the two remaining constants of integration C3 and C4 to the position
of the crest and the position of the trough, which are given by the middle roots of
the quartic polynomial from the numerator of (2.8). If α is the position of the crest
(so α − A is the position of the trough) C3 and C4 are functions of α since α and
α − A must be roots of the polynomial P (ζ ). By imposing this condition and solving
the resulting linear system, we have

C3(α) =
c2ρ1h

2
1

2(h1 − α)(h1 − α + A)
− c2ρ2h

2
2

2(h2 + α)(h2 + α − A)
− γ

(
α − A

2

)
, (4.3)

C4(α) = C3(α)(A + h1 − α) +
c2ρ1h

2
1

2(A + h1 − α)
− c2ρ2h

2
2

2(A − h2 − α)
− γ

2
(A − α)2. (4.4)

With the explicit expressions for all the coefficients thus determined, the other two
roots of the quartic P (ζ ) can in turn be determined in terms of explicit (albeit
lengthy) algebraic functions of α and A by solving the quadratic polynomial that
results from factoring the roots α and α − A. Similarly, the mean of the interface
becomes a function of α through (4.3), (4.4) in (3.3) (suppressing for ease of notation
the arguments C1 and C2 of the rational function R in the quadrature expression (2.8))

ζ̃ (α) =

∫ α

α−A

ζ dζ√
R(ζ, C3(α), C4(α))

/∫ α

α−A

dζ√
R(ζ, C3(α), C4(α))

. (4.5)

Hence, the position of the crest of the periodic solution can be determined by finding
the root of the nonlinear equation

ζ̃ (α) = 0. (4.6)

Note that the denominator in (4.5) is a positive quantity, hence a necessary condition
for existence of a solution is for the integrand of the function in the numerator

f (α) ≡
∫ α

α−A

ζ√
R(ζ, C3(α), C4(α))

dζ (4.7)

to change sign in the interval (α − A, α), which implies α − A < 0 < α. This leads
to a criterion for the existence of a solution satisfying all the requirements so far
imposed, by seeking the two limiting positions for the crest α when two roots of the
polynomial (2.10) collide. Let

αmin(A, c) ≡ α(A, c)|r1(α;A,c)=r2(α;A,c) (4.8)

and

αmax(A, c) ≡ α(A, c)|r3(α;A,c)=r4(α;A,c) (4.9)

denote the α-range lower and upper limits, respectively, where the
polynomial (2.10) has double roots βe(A, c) = r1 = r2 = αmin(A, c) − A and
βd(A, c) = r3 = r4 = αmax(A, c). Note that these would correspond to amplitude-A
solitary waves of, respectively, elevation and depression. Note also that these are not
limiting forms of the class of periodic waves that satisfy our requirements. Thus, the
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α
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Figure 3. Schematic construction of constrained solutions with zero momenta and mean
elevation for given amplitude A and speed c. The fluid is confined between the top and bottom
walls at z = h1 and z = −h2, respectively. The dark grey strip ‘highlights’ the range of the
interface function ζ (X) between the roots at α and α − A, while the light grey strip identifies
the allowable range determined by root coalescence at α − A = βe(A, c) and α = βd (A, c),
corresponding to solitary waves of elevation and depression, respectively. Solid curves depict
travelling wave solution profiles (only the right half for solitary waves). The location of the
targeted mean level is marked by the dashed horizontal line and the quartic function P (ζ ),
shown by the dash-dotted curve, varies according to the placement of α in the allowable
range from (a) to (c); (a) α = βe(A, c) + A, (b) βe(A, c) < α < βd (A, c) and (c) α = βd (A, c).
This construction is based on the actual configuration given by h1/h2 = 1/3, ρ1/ρ2 = 0.99,
c/c0 = 0.55, A/h1 = 1.

necessary condition for existence of a periodic solution becomes

βe(A, c) < 0 < βd(A, c); (4.10)

see figure 3 for an illustration of the connection between the position of the crest α

and the roots in such an instance. Moreover, as α → αmin(A, c), f (α) → −∞, whereas
as α → αmax(A, c), f (α) → ∞. It follows that f (α) will have a zero for some α in
the range (αmin , αmax), so that the condition βe(A, c) < 0 < βd(A, c) is also sufficient
for the existence of a periodic solution of mean zero. We remark that this argument
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does not guarantee uniqueness of zeros of f (α) and hence of periodic solutions

of mean zero. This would be guaranteed by the monotonicity of either ζ̃ (α) or the
function f (α). Numerical results confirm that both these functions are monotonic in
the interval (αmin , αmax), but a rigorous proof is still lacking.

4.2. Domain of existence

The considerations of the previous section allow us to outline a strategy for
determining periodic wave solutions of prescribed amplitude and speed, namely,
given an A and a c, we can check whether the double roots βe(A, c) and βd(A, c)
have opposite sign, which implies the existence of the periodic train of that
amplitude and speed satisfying the constraints of zero mean displacement, zero
period-averaged horizontal momentum and zero period-averaged volume flux. Of
course, actual construction of the periodic train would have to rely on a numerical
root-finding algorithm. Hence, it would be desirable to know a priori and to determine
analytically the portion of the (A, c) quadrant where the sufficiency condition (4.10)
holds.

To this end, we use the two families of solitary wave solutions of elevation and
depression corresponding to βe(A, c) and βd(A, c), respectively. In fact, the limiting
forms βd and βe are nothing else than a generalization of the solitary waves (or
fronts) solutions derived in Choi & Camassa (1999), which admit an explicit analytical
representation. In particular, the amplitude–speed relations of these families foliate
the (A, c) quadrant and their limiting front solutions provide a boundary of existence
in this quadrant, with the amplitude–speed relation given by an explicit quadratic
expression. Note that the quadrature is invariant with the change of the position of
the coordinate system in the vertical direction. Hence, we can represent the family of
solitary waves corresponding to the double roots βe(A, c) and βd(A, c), with a new
parametrization (β , c), with respect to ‘artificial’ height configuration h1 − β, h2 + β

for β ∈ (−h2, h1). The advantage of this new parametrization is that the polynomial
at the numerator of the quadrature can be expressed as a product of ζ 2 times a
quadratic polynomial, which provides the amplitude in closed form; see Choi &
Camassa (1999). These ‘foliating’ solitary wave solutions would then span a domain
in the parameter space (β , c), and this domain can in turn be mapped easily in the
parameter space (A , c). Note that in order to be useful for the construction of the
periodic wavetrain that satisfies our constraints, these solitary waves of elevation and
depression corresponding to double root βe and βd in the polynomial (2.10) must
satisfy condition (4.1), and hence they have prescribed volume fluxes in the wave
frame. By imposing the boundary conditions at infinity, we obtain

(uk|∞ − c)ηk|∞ = −chk, k = 1, 2, (4.11)

where uk|∞ can be interpreted as a current at infinity for the layer k in the lab frame
while ηk|∞ is the height of layer k at infinity, since ηk|∞ �= hk . Thus, these foliating
solitary wave solutions are generalizations of the standard solitary waves in Choi &
Camassa (1999), for which the background state has zero currents in the lab frame.
In Appendix A, we present an overview of this more general class of solitary waves,
which are of independent interest than the present focus on periodic waves.

The domain of existence in (β , c) of solitary waves with the prescribed fluxes
(4.11) can be found by fixing β and determining the range of speed c for which
solitary waves with property (4.11) exist. In Appendix B, we present details for
determining this range. For fixed β , the dependence between the maximum interface
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displacement a (or signed amplitude, defined as difference between the zero level in
the ‘artificial’ parameters and the peak of the wave) and speed c is given by (B 9) for
c ∈ [cmin(β) , cf (β)], where cmin(β) and cf (β) correspond to limiting speeds of solitary
wave of zero amplitude and front given by (B 5) and (B 6), respectively, and z = β0

is a constant level in the physical domain z ∈ [−h2, h1] determined solely by the
‘hardware’ parameters hk , ρk , k = 1, 2; see definition (B 8).

For fixed β , the sign of the maximum displacement a(c ; β) shows the polarity of
the class of solitary waves, with a(c ; β) > 0 corresponding to waves of elevation, and
a(c ; β) < 0 to depression, respectively, for all c ∈

[
cmin(β), cf (β)

]
. In Appendix B, we

show that if β < β0, then the corresponding maximum displacement branch a(c ; β)
is positive (elevation), and, conversely, if β > β0 then a(c ; β) < 0 (depression). Thus,
we can infer that the curves a(c ; β) with β < β0 correspond to the foliating family βe,
whereas the curves a(c ; β) with β > β0 correspond to the foliating family βd . These
families span a domain in the (a, c)-semi-plane c > 0, bounded by a curve represented
parametrically by

a
(
cf (β) ; β

)
, cf (β), β ∈ (−h2, h1),

which corresponds to front solutions. By eliminating β , we can obtain an explicit
formula for the front branch corresponding to a

(
cf (β)

)
, with β ∈ (−h2, h1). Let

hr ≡ h1/h2 and ρr ≡ ρ1/ρ2. When hr

√
ρr �= 1, the front branch is given by relation

(B 11), whereas for hr

√
ρr = 1 by relation (B 14). We remark that this particular depth

ratio, which is different from the critical depth ratio hr =
√

ρr , is associated with
a mathematical degeneracy of the quadrature formula (2.8) to elliptic functions, a
situation that does not seem to have any particular physical interpretation.

The curve cf (a) is symmetrical with respect to c axis. Returning to the original
parameters A, c, for which A > 0, corresponds to ‘folding’ the left half of the symmetric
domain in the a, c plane on top of the right half (see figure 4), by taking A = |a|.
Thus, for any point in the quadrant (A, c) with c ∈ [0, cf (A)] and A ∈ [0, H ], there
are two foliating solitary waves of opposite polarity. These waves define a window
for the possible locations of the crest and trough of a periodic wave of amplitude
A that satisfies the flux condition (4.1). Moreover, the zero mean of the interface
condition necessarily requires the crest location to be positive while the trough location
must be negative, according to (4.10). This condition selects a limiting foliating
curve

A(c; 0) = |a(c; 0)|, c ∈
[
cmin(0), cf (0)

]
, (4.12)

when β = 0, which further restricts the allowable domain in the A, c plane. (For
the region above this curve, the two β parameters corresponding to the two families
of foliating solitary waves have the same sign.) Note that the curve a(c; 0) with
c ∈ [c0, cm] corresponds to the standard solitary waves asymptotic to layer thicknesses
h1, h2. In the above, c0 is the long-wave critical speed for this configuration

c2
0 =

(1 − ρr )hr

(ρr + hr )(hr + 1)
gH, (4.13)

while cm, the speed of the highest travelling waves in Choi & Camassa (1999), and
the corresponding maximum amplitude am(cm; 0) are given by

c2
m =

1 − √
ρr

1 +
√

ρr

gH, am =
hr − √

ρr

(hr + 1)(
√

ρr + 1)
H. (4.14)
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Figure 4. (I.a), (II.a) and (III.a) The front branch that marks the domain of existence of
foliating solitary waves. (I.b), (II.b) and (III.b) Domain of existence for periodic waves of zero
horizontal momentum and zero flux (grey areas). The thicker curves correspond to foliating
solitary waves with β > 0 whereas thinner curves correspond to β < 0; continuous curves
correspond to foliating solitary waves of depression, dashed curves to elevation. Periodic
solutions can exist only in domains covered by solitary wave curves with opposite polarities
and opposite positions of the interface at infinity.

Hence, the curve A(c; 0) corresponds to the infinite period limit to solitary waves
of the periodic waves in our class, i.e. total horizontal momentum zero, total volume
flux zero and zero mean elevation. Indeed, these limiting solitary waves satisfy the
mean zero of the interface condition in the limit, because in the process of taking the



274 R. Camassa, P.-O. Rus̊as, A. Saxena and R. Tiron

mean the finite mass is divided by an infinite period. We can represent this branch of
the boundary as a function of amplitude A, by inverting (4.12)

csw(A) = c0

√
(h1 − sgn(β0)A)(h2 + sgn(β0)A)

h1h2 −
(
c2
0/g

)
sgn(β0)A

, A ∈ [0, Am] (4.15)

with Am = |am| and β0 given by (B 8). The other boundary of the existence domain
A ∈

[
|am| , H

]
≡ [Am, H ], being the front limit of each foliating solitary wave curve,

would correspond to the limit of our periodic waves to fronts.
Therefore, when the speed c increases with A fixed, A ∈ [0, Am], the periodic waves

limit to infinite period in the form of solitary waves. Conversely, when c increases
with A ∈ [Am, H ], the periodic waves broaden up to fronts. The standard front limit
of solitary waves (Choi & Camassa 1999) corresponds to the single point (Am, cm) at
the vertex of the domain. Apart from this point, the front branch [Am, H ] represents a
new class of front solutions. Note that for fixed c ∈ [c0, cm] the domain of existence of
periodic waves in our class consists of waves whose amplitude is larger than solitary
waves of the same speed, and moreover a portion of the domain of existence consists
of periodic waves of amplitude bigger than the maximum amplitude of the solitary
wave (which limits to a front) for the same configuration.

We sketch the above discussion in figure 4, for all three relevant cases: (I) hr <
√

ρr ,
in which the solitary waves limiting branch corresponds to waves of depression;
(II) hr >

√
ρr , in which the limiting solitary waves are of elevation; (III) hr =

√
ρr – the

critical density ratio – in which the solitary waves branch vanishes and the boundary
of the domain of existence is marked only by the front branch.

We remark, as shown in Appendix A, that the branch of front solutions that
forms the right boundary of the existence domain is in fact exact for the parent two-
layer Euler system, even though we arrive at it from within the asymptotic model.
This property provides a validation test for the numerical solutions of two-layer
Euler equations with large periods. We also remark that the vertical and horizontal
boundaries of the domain of existence correspond to infinitesimal amplitude waves,
and to the singular limit of infinitesimal wave speed where the vanishing period
shows that a neighbourhood of the c = 0 axis is clearly outside of the model’s validity
regime. In fact, as we will see in the next section and should be intuitive now given
that the wave amplitude spans the whole gap between plates, the point (H, 0) is
extremely singular, and in its neighbourhood wavetrains of any period can be found.

4.3. Extreme density limits

To complete this section, it is worth pointing out the limiting cases of equal density
layers and that of vanishing upper layer density. For the first case, ρr = 1, the physics
clearly cannot support internal wave motion, and this is reflected in the model by the
fact that the boundary of the domain of existence collapses to zero, as the equation
for the maximum speed (4.14) shows. For the second case, ρr = 0, which occurs
for ρ1 = 0 for a stably stratified fluid, the momentum equation governing the lower
layer (2.2) decouples from that of the first layer, thus reducing the system to the
single-layer version (Su & Gardner 1969; Green & Naghdi 1976). The effect of this
limit on the quadrature (2.8) is to make the potential a cubic since the root at the
denominator and a root of the quartic in the numerator collide at the upper boundary
of the physical domain h1. In the limit ρr → 0, the family of foliating solitary waves of
depression βd vanishes and the right boundary of the domain of existence consisting
of fronts degenerates to a branch of solitary waves that ‘scrape’ the top wall with
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their crests. The left/top boundary consisting of solitary waves when ρ1 �= 0 remains
a branch of solitary waves in the limit ρr → 0 and coincides with the ‘classic’ solitary
wave solutions for the strongly nonlinear single-layer model (Su & Gardner 1969;
Green & Naghdi 1976).

Curiously, the existence of maximum amplitude value Am for ρ1 �= 0, which
corresponds to the intersection of the two boundary branches for the existence
domain, retains a meaning in the single-layer case as the maximum amplitude of the
solitary wave that would fit within the domain walls at z = −h2 and z = h1. This
apparent maximum amplitude contrasts the well-known result that, for the single-
layer case, the strongly nonlinear model solitary-wave solutions do not possess a
limiting amplitude, just as for the weakly nonlinear models such as KdV. Also, we
remark that the degenerate front branch consists entirely of ‘scraping’ solitary waves,
and that these could still be thought of as fronts by cutting off half of the wave at
the crest (at z = h1). Also note that for this degenerate front branch, the dependence
of the speed on amplitude becomes linear.

5. Properties of constrained periodic wave trains
Having determined the domain of existence in the A, c quadrant of our two-

parameter family of periodic waves, we now turn to the study of the dependence of
other relevant physical properties on these parameters.

5.1. Wave shapes

Determining a periodic wave solution for given amplitude and speed is a root-finding
problem (4.6) which involves evaluation of a hyperelliptic integral, see (4.5). We use
a Newton scheme, whose quadratic convergence is desirable depending on a good
initial guess (away from singularities injected into the integral by double roots). Here
again the family of foliating solitary waves on artificial parameters becomes useful in
identifying the position of the singularities.

Away from the critical depth ratio, when hr �= √
ρr ≡ hcritical , the maximum

amplitude Am of the solitary wave branch marks a threshold amplitude that separates
two regimes A < Am or A > Am. The properties of the periodic solutions in these two
cases are distinctively different.

To fix ideas, let us focus on the case hr < hcritical . For fixed amplitude A < Am, as
the phase speed increases, the position of the trough approaches the position of the
foliating solitary wave of depression βd while the distance between the trough and
the other double root βe remains bounded away from zero and set by the maximum
speed for the corresponding solitary wave limiting form of the same amplitude.

For fixed amplitude A > Am, with increasing phase speed the position of the crest
once again approaches βd , but the trough now also approaches the other double root
βe. However, we remark that for the configuration we are focusing on, hr < hcritical ,
the approach of the trough position to this double root βe occurs at a much slower
rate than the approach of the crest to the other double root βd .

For the other configuration hr > hcritical this happens in reverse. We illustrate these
observations in figure 5 for a configuration with hr < hcritical and in figure 6 for
hr > hcritical , respectively.

For a configuration corresponding to the critical depth ratio hr =
√

ρr , when the
boundary of the domain of existence consists only of fronts, the position of the crest
approaches the limiting position βd at a slightly faster rate than the position of the
trough approaches βe; see figure 7.
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Figure 5. Wave profiles (half a period) along with the corresponding distances between the
crest and the double root βd and the trough and the double root βe , respectively, for a
configuration with hr <

√
ρr (h1/H = 1/6, h2/H = 5/6 and ρr = 0.97), for fixed amplitude (a)

A = Am/2 and (b) A = 2Am and phase speeds ranging from 10 % to 90 % of the corresponding
maximum speed (a) csw(A) and (b) cf (A), respectively. The dashed profiles correspond to the
limiting (a) solitary wave of amplitude A = Am/2 and (b) front of amplitude A = 2Am; they
are also depicted in the insets where the physical boundaries −h2, h1 are included.
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Figure 6. Same as in figure 5 for a configuration with hr >
√

ρr (h1/H = 1/1.2,
h2/H = 0.2/1.2 and ρr = 0.97).

We note that for large amplitudes, even when the pair speed/amplitude is away
from the boundary of the domain of existence, the hyperelliptic integrals involved
in the root-finding process become nearly singular and consequently high-precision
computations are necessary. We remark that the root finding in this situation could be
handled analytically via an asymptotic expansion in a small parameter representing
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Figure 7. Same as in figure 5(b) for a configuration corresponding to the critical case hr =
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(h1/H � 0.24, h2/H � 0.76 and ρr = 0.1). The waves have fixed amplitude A = H/2 and
phase speeds ranging from 10 % to 90 % of the corresponding maximum speed cf (H/2).

the distance between roots approaching the double root locations βd or βe. This
analysis, however, involves some subtleties that will be presented elsewhere.

5.2. Period dependence on speed and amplitude

Period average expressions such as the kinetic energy depend, of course, on knowing
the length L of the period where the average is computed. This is determined
through the quadrature by (3.2), and is therefore linked to the process of root finding
for our class of solutions described above. Unfortunately, this prevents us from writing
a simple and explicit functional dependence of period on A and c, and to find the
level sets of L over the (A, c) domain we have to resort to numerical methods. To
implement this, we determine the periodic wave solutions at the nodes of a grid
covering the existence domain, then compute the corresponding period and construct
the level sets by interpolation. Note that for determining the periodic solutions at
each node, we need the two limiting positions βe(A, c) and βd(A, c). This requires
inversion of the function a(c; β) given by (B 9), and the inversion can only be achieved
numerically by solving the two equations a(c; β) = A and a(c; β) = −A.

A strategy for reducing the computational cost is to cover the domain of existence
with only one of the foliating family of solitary waves, βd when hr < hcritical or βe

when hr > hcritical , by taking into account the observations made in § 5.1. These curves
are given in closed form by (B 9) and provide a good initial guess for the position of
the crest of periodic waves solutions. For constructing a constant period contour, we
(i) determine solutions along the foliating solitary wave curves, by using parameter
continuation techniques for accelerating the root-finding process; (ii) interpolate the
period as a function of speed c on these curves; (iii) determine for each curve the root
c corresponding to that particular period; finally (iv) perform a spline interpolation
for the (A, c) pairs found in the previous step.

In figure 8(a–c) we present period isolines for two particular configurations
corresponding to hr < hcritical and hr = hcritical , respectively. There are several
interesting qualitative observations that can be made based on these numerical results.
First, note that the period increases with the increase of phase speed, which is in
agreement with a general result for periodic waves in arbitrary stratification, proved
by Yih (1959). Second, all period isolines wrap along the front line as the amplitude
increases, converging to a singular limit that corresponds to a steep front of amplitude
equal to the total depth of the fluid. Although this limit is mathematically attainable,
it is not of practical relevance since it lies outside of the domain of expected validity
of solutions with respect to the parent Euler system, as we are going to see in the
following section. Third, we note that away from critical depth ratio, we can identify
two types of isolines: those along which the phase speeds are subcritical and those
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Figure 8. Level sets of the period (non-dimensionalized with the total height H ) for a
configuration with (a) hr <

√
ρr (h1/H = 1/6, h2/H = 5/6 and ρr = 0.97), (b) hr =

√
ρr

(h1/H � 0.41, h2/H � 0.58 and ρr = 0.5). The case hr >
√

ρr (h1/H � 0.56, h2/H � 0.44 and
ρr = 0.5) (not shown here) is similar to (a).

that contain regions with supercritical speeds. On both sub- and supercritical isolines,
the periodic solutions approach one of the two limiting foliating families (βd for
hr < hcritical or βe for hr > hcritical ) at a much faster rate than the other as the
amplitude increases. However, on subcritical isolines, we can identify a region where
both the position of the crest and the trough are nearly symmetrical with respect
to the (zero mean) z-axis, and lie away from the bounds given by βd and βe. In
these regions, the phase speed is comparable with the speed of waves of infinitesimal
amplitude.

Finally, we mention that a good approximation to the actual location of the
bounding roots α (for waves of depression) or α − A (for waves of elevation),
respectively, for fixed amplitude A and period L can be found for sufficiently large
period waves by a simple area criterion based on the effective wavelength λI (as
defined by Koop & Butler 1981 through the area integral of solitary wave profiles) of
limiting foliating solutions, based on the closeness result mentioned above.

5.3. Kinetic and potential energy

Once the quadrature solution is found, simple expressions for kinetic and potential
energy can be derived for the periodic wavetrain, which allows us to examine how
equipartition between these two forms of energy is lost as amplitude increases. By
using the fact that for our class of periodic waves the horizontal momentum Ik in
both layers k = 1, 2 is zero, the layer kinetic energy (3.18) in terms of the mean
Eulerian velocity (3.17) is

Tk = −ρk

2
chkũk. (5.1)

This expression (which is exact for Euler equations) shows that the mean Eulerian
velocity must be negative for periodic waves with zero horizontal momenta in both
layers. Notice that the model expression for the kinetic energy (3.18) does not
immediately show this property of sign definiteness. However, by replacing the
integration constant Ck given by (4.1) in the asymptotic relation (3.17), the mean
Eulerian velocity in the layer k can be expressed as a sum of two integrals

ũk =
c

L

∫ L/2

−L/2

[
1 − hk

ηk

]
dx − c

L

∫ L/2

−L/2

hkζ
2
X

3ηk

dX, (5.2)
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with the second being manifestly negative definite. For the first integral, by using
Cauchy–Schwartz inequality, we obtain(∫ L/2

−L/2

√
ηk

1
√

ηk

dX

)2

�

∫ L/2

−L/2

ηkdX

∫ L/2

−L/2

1

ηk

dX = hkL

∫ L/2

−L/2

1

ηk

dX, (5.3)

which implies that the first term in (5.2) is also negative. Thus, the quadrature
expression for the mean kinetic energy for layer k, up to terms of order O(ε4),

Tk = c2 hkρk

2 L

[∫ α0

α0−A

3 + R(ζ, C)

ηk

√
R(ζ, C)

dζ − 1

]
, (5.4)

is positive definite. Here the parameters C(α) are evaluated at α = α0, the position
of the crest—a root of the nonlinear equation (4.6)—and depend on the speed c and
the amplitude A (which determines the position of the root α0 − A of R(ζ, C) = 0
corresponding to the trough).

This expression of the kinetic energy, together with the expression for the potential
energy (3.4), allow us to test the resilience of the equipartition of energy for our
class of periodic waves as the amplitude increases. This property is well known to
hold for infinitesimal amplitude waves (Yih 1959), and we show below, when direct
comparisons with Euler solutions are presented, that this property in fact depends
strongly on period for both model and Euler solutions, in agreement with the finding
of Holyer (1979) for the different set-up of doubly infinite depths.

5.4. Limits of validity of the strongly nonlinear model

Our goal is to determine regions within the domain of existence of periodic solutions
of the strongly nonlinear model where we can expect good agreement with Euler
solutions. We expect this agreement to be satisfactory when the long-wave assumption
at the basis of the asymptotic model is satisfied in each layer. Let dk = max(ηk) denote
the maximum thickness of layer k, (k = 1, 2) and λ a characteristic wavelength. A
condition that would ensure that the long-wave assumption holds in both layers is

max(d1, d2)/λ 	 1.

Thus, to establish a validity criterion, we need an a priori estimate of a characteristic
horizontal length scale as well as upper bounds for the thickness of each layer. Once
again, the limiting positions corresponding to the foliating solitary waves βd and βe

prove to be useful.
First, we focus on the quasilinear regime. For the region within the domain of

existence where βd/A > 1/2 and |βe|/A > 1/2, the positions of the crest and trough
of the periodic wave solutions are far from the corresponding limiting positions
and quasi-symmetrical with respect to the interface, which translates in an almost-
sinusoidal wave shape. The maximum layer thickness is therefore well approximated
by d = max(h1 +A/2, h2 +A/2). Furthermore, the dispersion relation for infinitesimal
waves (relation (3.42) in Choi & Camassa 1999) offers a reasonable approximation
for the dependence of the period on the phase speed for periodic solutions; hence,
a good estimate for the horizontal length scale is half the period of the infinitesimal
waves with speed c. Note that the dispersion relation of the two-layer model no longer
agrees with the dispersion relation of Euler equations (Lamb 1932, p. 231) when the
long-wave parameter d/λ is not sufficiently small (see e.g. figure 2.12 of Tiron 2009
for typical errors in speed of the model with respect to Euler predictions). Thus, by
using the discrepancy between Euler and model dispersion relation, we can infer a
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Figure 9. Regions in the domain of existence where we can expect a good agreement of the
solutions of the strongly nonlinear model with Euler solutions for the configurations from
figures 8(a) and 8(b), respectively. The region at the left of the dashed line contains solutions
with quasi-sinusoidal wave shapes, whereas for the region at the right the periodic solutions
approach the foliating family βd .

threshold long-wave parameter that isolates the region of validity of the strongly
nonlinear model from this first part of the domain.

For the region within the domain of existence where βd/A < 1/2 (or |βe|/A < 1/2),
the position of the crest (or the position of the trough) of periodic solutions approaches
the limiting position βd (or βe). In this case, the maximum layer depth is well
approximated by d = max(h2 + βd, h1 − βd + A) (or d = max(h1 − βe, h2 + βe + A))
whereas the characteristic horizontal length scale of the foliating solitary waves
provides a good estimate for the horizontal length scale of periodic solutions since
the wave shapes are comparable. Obvious candidates for a characteristic length
scale of solitary waves are the effective wavelength λI and the ratio between the
amplitude and the maximum slope of the interface (λS = A/max [ζX]). An analytical
expression for the effective wavelength in terms of elliptic functions has been derived
by Choi & Camassa (1999) in the case of solitary waves with no currents at infinity.
Relationships for effective wavelength corresponding to solitary waves on general
currents at infinity are reported by Tiron (2009, see table 1, Appendix A), and a
strategy for computing the maximum slope of solitary waves and fronts is outlined in
Appendix A; see (A 9). We can thus define two long-wave parameters based on the
effective wavelength and the maximum slope, respectively,

εI = d/λI , εS = d/λS. (5.5)

The condition εS 	 1 measures the local validity of the solutions and therefore is a
much more restrictive criterion than εI 	 1, which is an average of the steepness of
the profile with respect to the thickness of the layer. We thus expect that for εI 	 1
and εS ∼ O(1) to have a reasonable overall agreement with Euler solutions, while
locally the model predicted profile does not match the Euler solution. We note that
in the limit to fronts, however, the effective wavelength diverges to infinity, the only
measure of a characteristic horizontal length scale being provided by the maximum
slope criterion. We summarize these ideas in figure 9, where we depict the regions
in the domain of existence of periodic solutions when the long-wave parameter is
smaller than unity.

We remark that some of the validity regimes we have identified could follow
the classification of two-layer asymptotic models provided by Bona et al. (2008);
however, we have not pursued this analysis here and work strictly with our model
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within their ‘shallow-shallow’ configuration. In this context, it is worth mentioning
that the strongly nonlinear model seems to work rather well (but not always) even
outside this configuration.

6. Validation of the model by comparison to Euler solutions
In this section, we compare periodic solutions of zero horizontal momentum in

each layer obtained by the strongly nonlinear model against numerical solutions of
the full Euler system under the same constraints. As remarked above, because of
(3.13), this also implies that the layer horizontal momenta are zero for both model
and Euler solutions. We first concentrate on the parent two-layer Euler system, using
the algorithm based on boundary integrals documented by Grue et al. (1999) and
Rus̊as (2001). Convergence properties of this algorithm have been extensively studied
in these references and others. We have performed further tests in the context of
the present work within our constrained class. We have adapted this algorithm to
seek solutions of a prescribed mean elevation, which requires a continuation search
on the initial guesses for this iterative algorithm (the details of this continuation
procedure are not important here and will be reported elsewhere). In particular, we
focus here on the practical limitations of the asymptotic model in view of the validity
estimates of § 5.4, by testing the model with this class of periodic waves as well as
their limiting forms of solitary waves and fronts, in various parametric regimes. Of
course, the two-layer set-up is highly idealized. In order to assess the relevance of this
idealization, we next compare periodic solutions of Euler equations for continuous
(but still near two-layer) stratification, obtained with a variant of the algorithm of
Turkington, Eydeland & Wang (1991), by looking at relevant diagnostics such as
wave profile and fluid velocities.

6.1. Two-layer Euler system versus strongly nonlinear model

For a given density ratio ρr between the two layers, the subcritical and supercritical
regimes (hr <

√
ρr and hr >

√
ρr , respectively) will have many similarities, with the

sole exception being the ‘polarity’ of the waves. As pointed out before, this is reflected
in the tendency of the crests or troughs, respectively, to flatten first with increasing
amplitude. The critical case, on the other hand, is special and deserves a separate
study. Accordingly, in the next two sections we report results from the subcritical and
critical cases only.

6.1.1. hr < hcritical

First, we look at a subcritical configuration hr < hcritical ≡ √
ρr , whose speed versus

amplitude chart is illustrated in figure 8(a). The corresponding chart with several
constant period curves computed with the full Euler two-layer system is reported in
figure 10, where the regions of validity discussed in the previous section are identified
by shaded portions of the existence domain.

Some general features of the comparison between strongly nonlinear model and
the full Euler solutions emerge from this figure. First, both strongly nonlinear and
Euler models share the presence of two types of period isolines – isolines along which
the phase speeds are subcritical c < c0 and isolines that have a portion on which the
phase speeds are supercritical c > c0. As one can see from figure 10, the agreement
between model and Euler predictions is, in general, superior in the region where the
phase speeds are supercritical (and the period is larger).

Next, the discrepancy between model and Euler period isolines amplifies with
increasing amplitude, this tendency being enhanced by decreasing period. While the
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Figure 10. (a) Isolines of period (labelled with L/H ) for the configuration from figure 8(a);
Continuous line denotes strongly nonlinear model, and dotted line and data points denote Euler
solutions. The dash-dotted curve marks the limiting amplitude, inferred from the numerical
results obtained with the Euler code, before overhanging develops. The shaded areas are the
estimated regions of validity of the strongly nonlinear model; see figure 9(a). (b) Slope level
set curve for foliating solutions and Euler period isolines, corresponding to the slope angle
of approximately 40◦. The model tracks the location of the envelope from the numerically
computed Euler isolines for most of the domain of expected validity.

model isolines wrap on the right boundary of the existence domain (corresponding
to the branch of fronts) as the amplitude increases, Euler isolines reach a
maximum amplitude and overturn, which correspond to periodic wave profiles of
the overhanging nature (multiple-valued interface for given x-locations) reported
in the literature in different set-ups (either infinite depth fluids or front solutions,
see e.g. Meiron & Saffman 1983 and Turner & Vanden-Broeck 1985, respectively).
Prolonging the constant period isolines past the overturning seems to lead to periodic
waves of smaller amplitude and larger speed with deeper overhangs, until this process
terminates with a wave of a self-intersecting profile of extreme form; see figure 11(a–d ).
(These overhanging features resemble those computed by Pullin & Grimshaw (1988)
for solitary waves with one infinite fluid layer.) We remark that this process of
termination by self-intersection can only be conjectured at this point and may not
apply to long-period waves, where we have not been able to achieve convergence
of the Euler code. Moreover, this process may not apply to the infinite depth case,
see Turner & Vanden-Broeck (1985). We further remark that both subcritical and
supercritical period isolines overturn in the region of subcritical phase speeds, and that
the size of the overturning region decreases with increasing period. The phenomenon
of overhanging periodic waves is connected with the existence of a maximum-
amplitude, single-valued Euler wave profile for a given period. The envelope of
constant period isolines for subcritical speeds defines a maximum amplitude boundary
for single-valued solutions of two-layer Euler equations; see the dash-dotted curve in
figure 10(a). It is remarkable that the strongly nonlinear model, for which all periodic
solutions are naturally single valued, still manages to inform about this envelope
through the setting of a threshold for model validity based on the slope achieved
along the proper foliating solutions (computed with (A 9)) in the existence domain;
see figure 10(b).

Another important feature of the Euler solutions emerges from this plot, namely
the non-uniqueness of periodic waves of given amplitude and speed. As can be seen
from figure 10(a), there exists a set of points in the parameter space (A , c) at the
left of the dash-dotted curve, where at least two Euler solutions, one regular whose
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Figure 11. (a–d ) Euler solutions of near maximal amplitude along four period isolines from
figure 10. The period and the corresponding pairs amplitude–speed are marked in the insets.

profile is a single-valued graph of x and one multiple-valued of the overhanging type,
move at the same speed with the same amplitude (but with different periods).

In figure 12, we compare the Euler solutions against model predictions for the
points marked in figure 10(a). In particular, in figure 12 we also provide the wave
profiles from KdV model solutions for identical parameters as both (a) and (b), for
the lowest and largest amplitude waves. As expected, there are notable differences
as amplitude increases with respect to the strongly nonlinear model, and, of course,
with the corresponding Euler profiles. Note also that while the strongly nonlinear
model fails to give local agreement with Euler solutions, it nonetheless succeeds in
capturing their broadening at extrema of the interface for increasing amplitudes with
large periods (similar to what is observed with solitary waves).

The progressive breakdown of the strongly nonlinear model’s fidelity is captured
reasonably well from the effective wavelength criterion discussed in the previous
section. The condition εS 	 1 isolates the level sets of period predicted by the model
which best match the Euler level sets. However, note that the strongly nonlinear model
performs well even in regions where εS ∼ O(1) provided the long-wave parameter
based on effective wavelength εI is much smaller than unity. Also note that for
all period isolines of the model, the wave shapes are steepening and converging to
a front of amplitude H with the ‘effective’ wavelength (hr/(hr + 1)) L selected by
mass conservation. This horizontal length scale is a good estimate for the effective
wavelength of both model and Euler wave profiles; see figures 13 and 14. Finally,
figure 15 presents a comparison between model results and Euler results for the mean
kinetic and potential energies. In particular, one can clearly see the equipartition of
kinetic and potential energies for small-amplitude waves for both strongly nonlinear
and full Euler solutions.

6.1.2. hr = hcritical

For a configuration corresponding to the critical depth ratio, the domain of existence
of solutions of the strongly nonlinear model contains only subcritical speeds c < c0,
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Figure 13. Wave shapes on an isoline of period L/H = 3.25. (a) Model, (b) Euler
(the dashed line reports the model-predicted limiting front with speed zero and amplitude
H from (a)).

and the only limiting forms of periodic waves consist of fronts. In this instance, the
quasi-linear region (where the wave shapes are quasi-sinusoidal) occupies a larger
portion of the domain of existence; see figure 16(a). As expected, the agreement
of the strongly nonlinear model with Euler is superior in the regions with εS 	 1.
Note that when the period increases, the isolines of period wrap along the front
branch of the domain of existence of the strongly nonlinear model solutions, which
confirms that the front branch represents an actual branch of front solutions for
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Figure 15. Mean kinetic energy (continuous line denotes strongly nonlinear model and
circles denote Euler solutions) and mean potential energy (dashed line denotes strongly
nonlinear model and dots denote Euler solutions) on two isolines of period from figure 10:
(a) L/H = 3.25 and (b) L/H = 16.67, respectively. The energies are non-dimensionalized
with γH 2.

the full Euler equations. We remark that these fronts are not the ‘classical’ fronts
studied by Dias & Vanden-Broeck (2003), given that in our case the two layers are
in relative uniform motion at both left and right asymptotic states. In figure 16(b–d ),
we compare the Euler wave shapes corresponding to points on the front branch to
front solutions of the strongly nonlinear model, by matching the zero crossing points
of the profiles. The agreement is quite reasonable even when εS is of order O(1).

6.2. Continuous stratification Euler system versus strongly nonlinear model

We complete the study of our class of periodic waves with a limited comparison
of results of the two-layer strongly nonlinear model with periodic wave solutions of
Euler equations with continuous stratification with a finite, albeit small, pycnocline
thickness. We note that the limit to zero thickness has been studied by James (2001).
Stationary periodic solutions for continuous stratification are determined by using
an iterative scheme based on the one described by Turkington et al. (1991). This
algorithm solves the Dubreil–Jacotin–Long (DJL) equation through minimization of
kinetic energy for prescribed potential energy with respect to a background density
stratification. Figure 17(a) depicts the density field for a periodic wave solution
obtained with this algorithm, with background continuous stratification consisting of
two layers of constant density, separated by a thin diffused interface corresponding
to experimentally measured physical parameters (cf. Grue et al. 1999).
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Figure 16. (a) Isolines of period (labelled with L/H ) for the configuration from figure 8(c);
Continuous line denotes strongly nonlinear model, and dotted line and data points denote
Euler solutions. The dashed curve corresponds to βd/A = 1/2 whereas the shaded areas are
the regions of validity of the strongly nonlinear model; see figure 9(b). (b–d ) Dashed line
denotes Euler periodic solutions (half profile) with period L/H = 17.56 and with speed and
amplitude corresponding to the points marked in figure 16(a); continuous line denotes front
solution of the strongly nonlinear model with the same speed and amplitude. The profiles are
horizontally aligned at the mean level crossing points.

Following the strategy outlined by Tiron (2009, chapter 3), we determine a two-
layer configuration that approximates the continuous stratification by optimizing
with respect to critical speed, mass and potential energy of a reference equilibrium
state, which is determined to be the mean level of the continuously stratified
solution. In figure 17(b) we compare the density isoline corresponding to the
mean density 1.0105 g cm−3 with the interface predicted by the optimized strongly
nonlinear model. Figure 17(c) compares the self-induced horizontal shear at the
maximum displacement of the pycnocline with the horizontal velocity profiles
predicted by the strongly nonlinear model asymptotics, through the reconstructed
z-dependence of the velocity field provided by (2.9). We remark that our
implementation of the DJL solver, while allowing for the volume flux to be set to
zero, does not impose the constraint of zero horizontal momentum for the resulting
solution. However, for the solution shown here as well as for most of the ones we
have studied in this algorithm, the momentum evaluated diagnostically after their
computation turns out to be very close to zero.

7. Discussion
We have presented a study of finite-depth periodic travelling wave solutions of

a strongly nonlinear model for internal wave propagation in two-layer inviscid,
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Figure 17. (a) Density field for a periodic wave in continuous stratification, L/H = 8. (b)
Wave profile comparison. (c) Horizontal velocity shear at the wave trough. The background
density profile is ρ(z) = ρmin + (1/2) (ρmax − ρmin)(1 − tanh(σ z)), with z ∈ [−h2, h1]. Physical
parameters are h1 = 15 cm, h2 = 62 cm, σ = 1.03, ρmin = 0.999 g cm−3, ρmax = 1.022 g cm−3.
The available potential energy per unit length for this wave is 581.635 g cm s−2.

incompressible fluid systems. These solutions constitute a much richer class than
their limiting forms, such as solitary wave solutions, which have been the main
focus of previous model investigations in both theory and experiments. In contrast
with these limiting forms, the lack of an asymptotic spatial reference state opens
up additional parametric freedom, and the distinction of which parameter subsets
constitute solutions relevant for physical situations becomes less clear. With our study
we have provided some order in the various results established in the literature on
two-layer finite-depth periodic internal wave solutions, by examining in detail the
role of the physical constraints on such waves and by studying their transition to
the limiting infinite-period forms. In particular, we have shown how such solutions
constitute a five-parameter family, which we conjecture holds for the general two-layer
Euler periodic single-valued solutions of symmetric type. Moreover, we have provided
examples that show non-uniqueness within this family, associated with ‘overhanging’
(multiple-valued) solutions of the Euler system.

In this work, we have chosen to focus on the particular parametric subset
corresponding to waves that generate no horizontal period-averaged momentum
in each layer, with respect to some inertial reference frame defined to be that of the
laboratory. Additionally, we impose that these waves maintain a prescribed period
average interface height, which can be thought of as that of an undisturbed reference
state. We chose these constraints with a past asymptotic temporal reference state in
mind, in which the process of wave generation proceeds from a quiescent state
with well-defined uniform layer thicknesses, in closed (but long) domains with wave
generators that do not apply a net horizontal force. While these conditions do
not necessarily guarantee the exact enforcement of our choice of constraints, it is
plausible to assume that under these circumstances our two sets of constraints can
be approximately satisfied. True periodicity could be approximated by a section of
the wavetrain far from both the generation region and the leading wave region,
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where the displaced interface connects with the flat surface between undisturbed
fluids. Other parametric subsets have been proposed in the literature for Euler and
weakly nonlinear systems. We looked at some of them in the context of our model in
Appendix C.

Several results have emerged from our study. First, we have identified analytically
the domain of existence of the periodic waves in the two-parameter space of amplitude
and speed. The boundary of this domain is represented by the limiting curves of
speed versus amplitude of solitary waves and fronts. While the solitary wave branch
is a long-wave approximation to the corresponding full two-layer Euler branch (but
practically indistinguishable from it as shown in the previous work of Camassa et al.
2006), the front branch is exact and coincides with that of the full Euler system, as
we show in Appendix A. Thus, the domain of existence we have identified thanks to
the model informs us on the corresponding domain for the full Euler system, even
though not every existing model solution within the domain can be expected to be a
good approximation of an Euler solution.

The numerical solutions of the full Euler two-layer system have also brought forth
the feature of overhanging periodic waves of higher speed than single-valued waves
of the same amplitude, within the same class of constrained zero momenta and
volume fluxes for solutions for the strongly nonlinear model. Similar overhanging
solutions of Euler equations have been the subject of previous studies; however, most
of these have concentrated on the case of infinite thickness of either both or one
fluid layer. In contrast, our study has concentrated on finite depth of both layers,
and in particular we locate the domain of existence of overhanging periodic solutions
for these configurations. Moreover, our Euler solutions explore the transition from
finite period to infinite period front solution of the overhanging type. It is interesting
to speculate that the point at which the envelope of maximum amplitudes for given
period intersects the boundary of the existence domain along the front branch
separates this branch between single-valued front profiles and overhanging ones
similar to those found by Dias & Vanden-Broeck (2003). If so, it is remarkable that
the model maximum slope curves can offer an estimate of this transition amplitude
along the front branch.

By comparing with numerical solutions of the full Euler system, we have shown
that the model solutions are accurate approximations whenever certain criteria of
asymptotic accuracy based on definitions of ‘long-waveness’ and departure from
near-linear regimes are satisfied. This first and most stringent application of these
criteria excludes from the existence domain the region where overhanging waves are
found, and the model predictions are very good approximations of the full Euler
solution. It is remarkable that with a second criterion based on a non-local definition
of effective wavelength, the model is still able to pick up with some accuracy the
location of flattening crests and/or troughs, even though the wave profile may fail
to offer a good local approximation. In particular, the Euler computations show that
a portion of the existence domain from the model needs to be removed as Euler
solutions do not exist in this region. Euler periodic waves of the constrained class we
have studied have a (single-valued regular) wave of maximum amplitude for a given
period. The envelope of all the constant period curves in the (A, c) plane gives rise
to a curve marking the boundary of existence of these Euler periodic solutions. Here
again the model is able to inform about the boundary of this region by examining
the maximum slope curve of its solutions in the existence domain.

A large portion of the existence domain is taken by periodic waves which are
de facto the spatially truncated version of solitary waves or fronts. These are not
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the classic cases of such internal waves, which are asymptotic to quiescent states.
Instead, these infinite-period limiting waves are defined on background relative
currents between the two layers. This situation has not been given much attention
in previous work, presumably due to lack of physical interest for a velocity jump to
be sustained over an infinite interface. However, the length of this interface becomes
finite when clipped in the process of constructing periodic waves, thus justifying the
sketch of such limiting cases presented in Appendices A and B.

A result of possible relevance in applications, where solitary waves rarely occur in
true solitary fashion and are more commonly members of wave trains with multiple
crests, is exhibited by the supercritical speed region near the vertex of the existence
domain. There, for a fixed supercritical speed and relatively long period waves,
two different amplitude waves exist, with one attaining an amplitude that can be
substantially larger than the maximum wave which is the limit of the classic solitary
wave branch to a front.

Several future directions could stem from our study of the periodic solutions for the
two-layer strongly nonlinear model. Perhaps the one most physically relevant is the
modulated wavetrains that can be obtained perturbatively by allowing the quadrature
integration constants to be slowly varying functions of space and time. To this end,
asymptotics of the quadrature formula for nearly flat crests or troughs would have to
be established and are in progress. Such a study would be of relevance in geophysical
applications, where near-solitary wave trains are a common occurrence. On a more
mathematical level, the overhanging solutions and their model approximations provide
a starting point to explore the issue of multiplicity for this class of two-layer Euler
solutions (as well as their stability properties) and criteria (Amick & Turner 1986)
of selection between the alternatives of vertical tangency or broadening to front
solutions in the solitary wave limits.
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Appendix A. Solitary waves on uniform layer currents
Closed form solutions for solitary waves in the most physically common situation

of fluid at rest at infinity can be found for the strongly nonlinear model (Choi
& Camassa 1999). The analysis can easily be extended to the situation of layers
of inviscid fluid in relative uniform motion. This set-up is admittedly less likely
to have physical relevance, (but note Gavrilov 1994 for immiscible fluids) as a
(constant) velocity jump cannot be sustained indefinitely as |x| → ∞ by real viscous
fluids; however, this investigation is relevant in the discussion of various classes of
periodic waves, where velocity jumps occur locally within the period. Interfacial waves
between two layers in uniform-current relative background motion have been studied
in the periodic case for unbounded fluids by Saffman & Yuen (1982) using weakly
nonlinear models and numerical computations of Euler equations. In this appendix,
we summarize the properties of solitary waves on relative currents which are relevant
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to the study in § 4 (see Tiron 2009 for a detailed analysis, Makarenko & Maltseva
2007 and Makarenko, Maltseva & Kazakov 2009 where similar results are reported).

A.1. Quadrature and domain of existence

Throughout this appendix, we shall work in the frame of reference of the waves,
i.e. that of an observer who sees the wave profile as constant in time. We will thus
study the two-parameter family of solitary wave solutions on a given reference state
(determined by the ‘hardware’ parameters of heights and densities of the undisturbed
layers h1, h2 and ρ1, ρ2, respectively), parametrized by the uniform currents at infinity
in each of the two layers û1|∞, û2|∞. We introduce the non-dimensional parameters

ρ ≡ ρ1/ρ2, h ≡ h1/h2,

and note the relationships between the total height H = h1 + h2 and the widths of
the layers

h1 =
hH

1 + h
and h2 =

H

1 + h
. (A 1)

Let ûk|∞, k = 1, 2 denote the arbitrary currents at infinity in the wave frame, and
let Uk be the square of these speeds Uk ≡ û2

k|∞, k = 1, 2 (i.e. Uk = (gH )F 2
k , where Fk

are layer Froude numbers).
By using the appropriate boundary conditions at infinity, the quadrature (2.8)

becomes

ζ 2
X = 3γ

ζ 2
[
ζ 2 + q1(U1, U2)ζ + q2(U1, U2)

]
ρ1h

2
1U1η2 + ρ2h

2
2U2η1

, (A 2)

where

q1(U1, U2) =
1 − h

1 + h
H +

ρU1 − U2

(1 − ρ)g
, q2(U1, U2) = − h

1 + h
H 2 +

H (ρU1 + hU2)

g(1 − ρ)(1 + h)
.

(A 3)
Solitary wave solutions exist only for certain combinations of currents in the two
layers. First, we observe that the root of the denominator in (A 2),

a∗(U1, U2) =
h

1 + h

ρhU1 + U2

U2 − ρh2U1

H , (A 4)

is, in general, outside the physical domain except the limiting cases U1 = 0 or U2 = 0,
when a∗ equals h1 or −h2, respectively. Thus, the domain of existence of solitary
waves in the quadrant for positive U1 and U2 can be determined by looking at the
behaviour of the roots of the quadratic ζ 2 + q1(U1, U2)ζ + q2(U1, U2) on lines

U2(κ) = κU1, with κ ∈ [0, ∞).

It is found that solitary wave solutions exist for

U1 ∈ [U1min(κ), U1max(κ)],

with U1min(κ) as the root of equation q2(U1, κU1) = 0,

U1min(κ) =
(1 − ρ)h

(1 + h)(ρ + hκ)
gH, (A 5)

corresponding to a dispersive wave of infinitesimal amplitude and with infinite period,
and

U1max(κ) = U
(1)
1 (κ) = (1 − ρ)

(
√

ρ −
√

κ)2

(κ − ρ)2
gH, (A 6)
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corresponding to an internal bore solution. The amplitudes of the solitary waves
along the line U2 = κU1 for U1 ∈ [U1min(κ) , U1max(κ)] vary between zero and

amax(κ) =
h

√
κ − √

ρ

(1 + h)(
√

κ +
√

ρ)
H, (A 7)

having the sign given by the sign of amax(κ). We thus have

a(U1, κU1) =
−q1(U1, κU1) − sgn(h

√
κ − √

ρ)
√

∆(U1, κU1)

2
, (A 8)

where ∆(U1, U2) = q1(U1, U2)
2 − 4q2(U1, U2). Note that the (right) boundary of the

domain of existence corresponding to fronts, parametrized by

(U1max(κ), κU1max(κ)) with κ ∈ [0 , ∞),

where U1max(κ) is given by (A 6) and the corresponding amplitude by (A 7), represents
exact conjugate state solutions of Euler equations; see Tiron (2009) for details. We
also remark that the validity of each solitary wave solution in the domain of existence
can be tested by computing the associated long-wave parameter based on maximum
slope (or, alternatively, on effective wavelength); see relation (5.5). By the quadrature
formula, the maximum slope of the wave profile can be computed explicitly by chain
rule and solving for the inflection point with positive slope, ζ = ζI . Hence

max ζX =
√

R(ζI ) with ∂ζR(ζI ) = 0 . (A 9)

Finally, it should be mentioned that an alternative (geometric) approach based on the
criticality of two-layer uniform current flows by Bridges & Donaldson (2007), and
utilizing the same motion invariants of mass and momentum flux (or flow-force) and
Bernoulli differential constant, seems to offer a strategy for the determination of the
parametric space of solitary wave existence summarized here and analysed in detail by
Tiron (2009). In this context, we note the existence results by Mielke (1995) directly
on the Euler set of equations shed further light on the solitary-wave-on-currents
problem.

Appendix B. Solitary waves in ‘artificial’ parameters
The domain of existence in the parameter space (β , c) of solitary waves with the

prescribed fluxes (4.11) can be found by fixing β and determining the range of speeds
c for which solitary waves with property (4.11) exist.

From (4.11), with ηk|∞ = hk + (−1)kβ , we can determine the current at infinity in
the wave frame in each layer

û1|∞ = − ch1

h1 − β
, û2|∞ = − ch2

h2 + β
. (B 1)

Note that for obtaining the range of phase speeds c for fixed β , we can mirror the
discussion in Appendix A by shifting the heights of the asymptotic level as |X| → ∞

h1 ≡ h1 − β , h2 ≡ h2 + β , h ≡ (h1 − β)/(h2 + β)), (B 2)

and study solitary waves on currents parametrized by

U1 =
c2h2

1

(h1 − β)2
, (B 3)
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on a line in the parameter space (U1 , U2) given by

U2 = κU1 with κ =
h2

2(h1 − β)2

h2
1(h2 + β)2

. (B 4)

Thus, by using (B 1)–(B 4), we can express the coefficients of the quadratic at the
numerator of the quadrature q1, q2 and the root at the denominator a∗ solely in terms
of c and β; see Tiron (2009). Based on the results in Appendix A and by using
(B 1)–(B 4), we can infer that solitary wave solutions with the property (4.11) for fixed
β exist for

c ∈ [cmin(β), cf (β)],

where relationships (A 5) and (A 6) for the speed of the limiting cases of solitary and
front solutions turn into

cmin(β) =

√
γ (h1 − β)3(h2 + β)3

ρ1h
2
1(h2 + β)3 + ρ2h

2
2(h1 − β)3

, (B 5)

and

cf (β) =
√

g(1 − ρr )H
(h1 − β)(h2 + β)

√
ρrh1(h2 + β) + h2(h1 − β)

, (B 6)

respectively. The corresponding maximum amplitude is given by (A 7) modified by
the new β-shifted asymptotic heights

af (β) =
(h1 − β)2 − hr

√
ρr (h2 + β)2

(hr

√
ρr − 1)β + hr

√
ρrh2 + h1

. (B 7)

As in Appendix A, the polarity of the family of solitary waves parametrized by β is
given by the sign of the amplitude of the front (B 7). We thus have, from (B 7),

af (β) < 0 for β < β0 and af (β) > 0 for β > β0,

with

β0 =
H

1 + hr

hr −
√

hr

√
ρr

1 +
√

hr

√
ρr

. (B 8)

The amplitude of the foliating family of solitary waves parametrized by β is
therefore

a(c ; β) =
−q1(c ; β) + sgn(β0 − β)

√
∆(c ; β)

2
, c ∈

[
cmin(β), cf (β)

]
. (B 9)

We can eliminate β from (B 7) as root of the quadratic equation that is in the range
[−h2, h1],

βf (a) = −a

2
+

h1(
√

ρr + 1)

1 − hr

√
ρr

−
√

a2(1 − hr

√
ρr )2 + 4H 2hr

√
ρr

2(1 − hr

√
ρr )

, (B 10)

and substituting in (B 6) we obtain an explicit formula for the amplitude–speed
relation for the front branch subject to restriction hr

√
ρr �= 1

cf (a) =
√

Hg
(1 + hr )

√
1 − ρr

(hr

√
ρr − 1)2

(
hr

√
ρr + 1 −

√( a

H

)2

(hr

√
ρr − 1)2 + 4hr

√
ρr

)
.

(B 11)
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For the special depth ratio hr

√
ρr = 1 the above expression becomes invalid. In this

case the dependence of af on β is linear and (B 7) becomes

af (β) = h1 − h2 − 2β , (B 12)

with the maximum speed (B 6) for this case being

cf (β) =
√

Hg
(1 + hr )

2

hr

√
1 − √

ρr

1 +
√

ρr

(h1 − β)(h2 + β)

H 2
. (B 13)

The front branch amplitude–speed relation in this special case hr

√
ρr = 1 is therefore

cf (a) =
√

Hg
(1 + hr )

2

4hr

√
1 − √

ρr

1 +
√

ρr

(
1 −

( a

H

)2
)

. (B 14)

We note that the front branch cf (a) is symmetric with respect to c axis; the level β

corresponding to af = 0 is given by β0.
Finally, we note how a simple geometric construction based on the effective

wavelength can give an approximate speed-amplitude relation for a given period,
based on the observation that actual periodic solutions are very close to their limiting
foliating solution if the period is sufficiently large. In fact, equating the area in the
strip of height β and width L to the area under the solitary wave profile 2AλI , gives,
because of the fast exponential decay of solitary waves, the position β and speed c
corresponding to a mean-zero elevation, period-L wave in the constrained class. For
a configuration of periodic waves approaching solitary waves of depression, this is
determined by

βL

2
=

2

µ(β, A)

[√
a∗(β) − a−(β, A) (F (δ, k) − E(δ, k)) +

√
Aa∗(β)

a−(β, A)

]
, (B 15)

where the modulus and argument of the elliptic functions depend on β and A through

k2 =
A + a∗(β)

a∗(β) − a−(β, A)
, m2 =

a−(β, A)

A

a∗(β) + A

a−(β, A) − a∗(β)
, sin δ =

1

m
.

Here a∗(β) is the root at the denominator of the quadrature, and a−(β, A) = A −
q1(c(β, A); β) . We can obtain an explicit dependence of c on β and A by imposing
that ζ = −A is a root of the quadratic ζ 2 + q1(c; β)ζ + q2(c; β) and thus obtain a
linear equation in c2. This construction is illustrated in figure 18.

Appendix C. Other classes of periodic waves
In this appendix, we review a few alternatives of our choice of constraints as well

as models reported in the literature for periodic wave motion in a two-layer system
of finite depth. These alternatives all share with our model the assumption of single-
valuedness of the interface between the two layers, thereby excluding overhanging
wave solutions. With this functional assumption, the minimal number of quantities
needed to determine a unique wavetrain is five for all cases, just as in our study of
the strongly nonlinear model.

We remark that the majority of these alternative studies are aimed at the limiting
forms of periodic waves corresponding to solitary waves on zero currents at infinity,
the issue of the possible generation mechanisms of periodic wave trains thus
being circumvented. These alternatives leave the mean position of the interface
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β

h1

−h2

A

L

βL

2AλI

Figure 18. Sketch of the approximation for periodic wave solutions close to their solitary
wave limit. The crest position β of a periodic solution for given amplitude (a) and period L
can be determined by equating the area under the foliating solitary wave profile with the area
above the mean level over a period L.

a priori undetermined, and seek some other constraints fixing the five quantities that
determine the periodic wavetrain. In the following, we show how to cast these different
constraints in the framework of the strongly nonlinear model.

C.1. Periodic waves with prescribed volume fluxes

Miyata (2000) proposed the same strongly nonlinear long-wave model and studied a
class of periodic waves that limit on solitary waves on zero current at infinity. The
position of the crest is located at fixed distance h2 from the bottom wall (thus at
distance h1 = H − h2 from the top wall). The volume fluxes in each layer are set
to zero in a particular frame of reference which is designated as the ‘lab’ frame, so

that in the wave frame they are Q̂k = −chk , k = 1, 2, where c is the phase speed.
Thus, Miyata obtains a two-parameter family of periodic solutions parametrized by
the phase speed c and amplitude A, which, in the limit of infinite period, recovers the
solitary wave solution with asymptotic behaviour at infinity ηk → hk and zero current
in both layers.

These constraints (fixed position of the trough and zero volume fluxes in each layer)
yield a distinct class of waves with respect to the one we have concentrated on and
defined in § 4 (waves of momentum zero in the frame for which the total volume flux
is zero). While the total volume flux in the lab frame is zero for this particular class
of waves,

Q = η1u1 + η2u2 = 0 , (C 1)

the total horizontal momentum is different than zero since

I1 + ρrI2 = 0 �= I1 + I2 . (C 2)

Miyata derived his periodic solutions for the particular depth ratio hr ≡ h1/h2 =
1/

√
ρr , which is different than the critical case hr =

√
ρr . For this particular ratio, his

periodic solutions are expressible via elliptic functions.
We can cast Miyata’s solutions in our notation in the general case (for arbitrary

hr ), by looking at the class of waves for which the position of the trough is not
constrained. Again, the strongly nonlinear model yields solutions which are expressible
via hyperelliptic functions except for the particular case hr

√
ρr = 1, when the root

in the denominator for the quadrature (2.8) vanishes and the hyperelliptic integral
associated with the quadrature degenerates into an elliptic integral. In addition to
generalizing Miyata’s class of periodic waves, we will also determine their domain of
existence following a similar strategy as for our main constrained class of periodic
solutions. We remark that by not enforcing the mean position of interface constraint,
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the analysis is greatly simplified for Miyata’s class with respect to that of our main
class.

Following the same procedure as in § 4, the constants C3 and C4 can be determined
uniquely by imposing the conditions that 0 and −A are roots of the polynomial at
the numerator in (2.8). Thus

C3 =
c2

2

[
ρ1h1

h1 + A
− ρ2h2

h2 − A

]
+

γA

2
, C4 = C3h1 + c2 ρ1h1 + ρ2h2

2
. (C 3)

With all the constants Ci , i = 1, . . . , 4, thus determined, we can construct the periodic
solution from the quadrature (2.8) and determine the domain of existence of this class
of periodic waves in the parameter space c and A. We restrict our attention to the
case h1 < hcritical . Once again, there are two bounding curves for this domain, which
correspond to limiting cases of solitary waves with the prescribed fluxes. One limiting
branch consists of the ‘classic’ solitary waves that satisfy the asymptotic condition,
ηk → hk and uk → 0 as |X| → ∞. The other limiting branch is given by solitary waves
of opposite polarity superimposed on different non-zero currents at infinity (since the
position of the interface at infinity in this case is (h1 + A, h2 − A)), which can be
determined by imposing the flux condition in each layer

(uk − c) ηk = (uk|∞ − c)(hk + (−1)kA) = −chk, k = 1, 2. (C 4)

Using the notation from Appendix A yields

U1 =
c2h2

1

(h1 + A)2
, U2 =

c2h2
2

(h2 − A)2
. (C 5)

The coefficients q1, q2, given by (A 3), respectively, in the quadratic polynomial from
the numerator of (A 2) can be thus expressed in terms of A and c. For a given
amplitude A, we want to determine the velocity c of the solitary wave on the current
U1, U2 given by (C 5). That is equivalent to requiring that A is the root of the equation

A2 + q1(A, c)A + q2(A, c) = 0,

which determines the square of the phase speed c2,

c(A)2 = γ

(
ρ1h1

(h1 + A)2
+

ρ2h2

(h2 − A)2

)−1

. (C 6)

In order to select from the curve (A, c) given by (C 6) the part that corresponds to
actual solitary waves, we need to make sure that the second root of the equation

r2 + q1(A, c(A))r + q2(A, c(A)) = 0,

say B , satisfies the condition B > A. Thus, we need the condition

q1 = −(A + B) < −2A.

This yields

− ρ2h1h2

(h2 − A)2
+

ρ1h1h2

(h1 + A)2
< 0,

which allows us to conclude that relation (C 6) defines the branch II of the limiting
solitary waves for

A > |am| =

∣∣∣∣h2 − √
ρrh1√

ρr + 1

∣∣∣∣ ,
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where am is the maximum amplitude of the usual front for layer thicknesses (h1, h2).
We remark that solutions of Miyata’s class effectively take a different constraint
surface through the five-dimensional parameter space of periodic solutions, and that
the domain of existence on these surfaces coincides with our main class along the
segments of boundary corresponding to the classical solitary wave solutions and the
axes. We also remark that the critical depth ratio case follows a similar fate as that of
our main constrained class, namely the classic solitary wave branch at the top of the
existence domain shrinks to the point (0, c0) and only the type II solutions survive.

C.2. Periodic waves with prescribed mean Eulerian velocities

Funakoshi & Oikawa (1986) studied the two-layer Euler system numerically and
computed a class of periodic waves under the constraint that the period average of
the Eulerian wall velocity (defined in the lab frame) be zero for both top and bottom
walls. Their other two constraints are to fix the position of the crest and the period
length (thus fixing five independent parameters, phase speed, two mean Eulerian wall
velocities, crest position and period).

Similar to the previous sections, we now use the strongly nonlinear model to find
how these different constraints relate to the quadrature constants Ci , i = 1, . . . , 4. By
fixing the position of the crest of the wave, we specify one of the four roots in the
polynomial at the numerator (2.10), say r2, which constitutes a constraint among the
integration constants Ci , i = 1, . . . , 4, or P (r2, C) = 0, where P is the polynomial in
the numerator of (2.8). By fixing the period, we obtain another integral constraint
involving the constants Ci , i = 1, . . . , 4, L = L(C); see relation (3.2). By using the
asymptotic expressions (3.17) for the mean Eulerian velocities and setting them to zero
for both layers, we obtain two more integral constraints for the constants C1, . . . , C4

involving the wave speed (c) ũk(c, C) = 0 , k = 1, 2. We remark that a given wave
shape in the class of § 4 may not be a solution of the class of these constraints, and
certainly not with the same phase speed because the kinetic energy equation (3.18)
with mean Eulerian wall velocity zero in each layer yields

Tk = c Ik/2, (C 7)

so that the horizontal momenta Ik must be non-zero, unlike the constraint imposed
in § 4. The question of whether the same wave profile (but different phase speeds) can
belong to both classes might be interesting but lies outside of the present study.

C.3. Weakly nonlinear unidirectional limit

Among the class of periodic solutions that can be constructed for two-layer systems,
a special mention goes to those derived through weakly nonlinear, unidirectional
models. Funakoshi & Oikawa (1986) also derived a KdV–mKdV equation for waves
of small amplitude, whence periodic solutions of standard elliptic functional form
derive. However, we remark that this particular class of waves does not recover the
correct asymptotic limit of the dispersion relation (as evidenced by figure 9b,c in that
paper).

In fact, an asymptotically consistent KdV–mKdV model is a particular case of a
unidirectional model that can be obtained from the strongly nonlinear model. This
reduction of degrees of freedom for the wave motion, from bi- to unidirectional, has
the effect of reducing the number of parameters that define a periodic wavetrain from
five to three. We can thus anticipate that the constraints that rely on the definition of
a lab frame (through its connection to wave speed) for the full Euler two-layer system
as well as for the strongly nonlinear model will be violated, in general, albeit possibly
only by asymptotically small errors arising from the unidirectional limit process.
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The travelling wave solution ansatz in the unidirectional model in Choi & Camassa
(1999) ((A 14) in Appendix A) results in the quadrature formula

ζ 2
X =

c3

4(c4 − c5)

ζ 4 +
2

3

c1

c3

ζ 3 +
2(c0 − c)

c3

ζ 2 + C1ζ + C2

ζ +
c2c1 + (c0 − c)(2c4 − c5)

2c1(c5 − c4)

, (C 8)

where C1 and C2 are constants of integration which are related to purely geometric
wave properties such as amplitude, period, and mean level, while c1, c2, c3, c4 and c5

are ‘hardware’ constants determined by the densities and layer thicknesses (Choi &
Camassa 1999, (A 7a) and (A 7b) in Appendix A). The quadrature (C 8) has the same
structure as its bi-directional analogue (2.8), but only two constants of integration
are needed. While we have not extensively studied this class here, it is interesting to
note that at least for small-amplitude wavetrains, well within the range of validity of
the unidirectional model, its periodic solutions are in good agreement with those of
the bi-directional model in the constrained class of zero period-averaged momentum
for each layer.
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